Show simple item record

dc.contributor.authorAkdim, Y. ( )
dc.contributor.authorAzroul, E. ( )
dc.contributor.authorBenkirane, A. ( )
dc.date.accessioned2020-01-07T18:38:05Z
dc.date.available2020-01-07T18:38:05Z
dc.date.issued2001-11-26
dc.identifier.citationAkdim, Y., Azroul, E., & Benkirane, A. (2001). Existence of solutions for quasilinear degenerate elliptic equations. Electronic Journal of Differential Equations, 2000(71), pp. 1-19.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/9151
dc.description.abstractIn this paper, we study the existence of solutions for quasilinear degenerate elliptic equations of the form A(u) + g(x, u, ∇u) = h, where A is a Leray-Lions operator from W1,p0 (Ω, w) to its dual. On the nonlinear term g(x, s, ξ), we assume growth conditions on ξ, not on s, and a sign condition on s.en_US
dc.formatText
dc.format.extent19 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2001, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectWeighted Sobolev spacesen_US
dc.subjectHardy inequalityen_US
dc.subjectQuasilinear degenerate elliptic operatorsen_US
dc.titleExistence of Solutions for Quasilinear Degenerate Elliptic Equationsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record