Show simple item record

dc.contributor.authorBhattacharya, Tilak ( )
dc.date.accessioned2020-01-09T16:38:27Z
dc.date.available2020-01-09T16:38:27Z
dc.date.issued2001-05-16
dc.identifier.citationBhattacharya, T. (2001). Some observations on the first eigenvalue of the p-Laplacian and its connections with asymmetry. Electronic Journal of Differential Equations, 2001(35), pp. 1-15.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/9166
dc.description.abstractIn this work, we present a lower bound for the first eigenvalue of the p-Laplacian on bounded domains in ℝ2. Let λ1 be the first eigenvalue and λ*1 be the first eigenvalue for the ball of the same volume. Then we show that λ1 ≥ λ*1 (1 + Cα(Ω3)), for some constant C, where α is the asymmetry of the domain Ω. This provides a lower bound sharper than the bound in Faber-Krahn inequality.en_US
dc.formatText
dc.format.extent15 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2001, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectAsymmetryen_US
dc.subjectDe Giorgi perimeteren_US
dc.subjectp-Laplacianen_US
dc.subjectFirst eigenvalueen_US
dc.subjectTalenti's inequalityen_US
dc.titleSome Observations on the First Eigenvalue of the p-Laplacian and its Connections with Asymmetryen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record