A Game Theoretic Framework to Secure Cyber Physical Systems (CPS) against Cyber Attacks

Date

2018-12

Authors

Siddique, Khan

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Cyber-Physical Systems (CPS) is a term describing a broad range of complex, multi-disciplinary, physically-aware next generation engineered systems that integrate embedded computing technologies (cyber part) into the physical world. CPS are engineered systems that are built from, and depend upon, the seamless integration of computational algorithms and physical components [2]. Generally speaking, they are sensor-based communication-enabled autonomous systems. Wireless sensor network for environmental control, smart grid system and industrial robotics systems can be a good example of CPS. With the exponential growth of CPS, new security challenges have emerged. Various vulnerabilities, threats, and attacks have been detected for the new generation of CPS. Additionally, the heterogeneity of CPS components and the diversity of CPS systems have made it very difficult to study the security problem with one generalized model. This thesis focuses on the development of effective deterministic and stochastic mathematical programming approaches to protect the CPS against a wide range of cyber attacks. The primary goal of this work is to orchestrate an optimization methodology based on a game theoretic framework to protect the CPS and evaluate its results using a simulation model and a real world testbed. To assert that the game theoretic framework yields to an optimized performance, three other heuristic approaches (i.e. Greedy, Greedy-LP, Random) are formulated and their results are compared to the outcome from the game theory approach. The game theoretic model was further extended to include stochastic number of signals and stochastic effectiveness. A two-stage stochastic model was formulated and the results were compared. Further investigations included simulation of a real world system. The simulation model was coded in MatLab Simulink to emulate a real world CPS. As a final step in this thesis, a real life CPS testbed was constructed with functioning cyber and physical components and the results from the different approaches studied are tested and compared. It has been found that the two-stage stochastic programming (two-SSP) model gives most optimized result to protect CPS.

Description

Keywords

game theory, cyber physical system, cyber security

Citation

Siddique, K. (2018). A game theoretic framework to secure cyber physical systems (CPS) against cyber attacks (Unpublished thesis). Texas State University, San Marcos, Texas.

Rights

Rights Holder

Rights License

Rights URI