Show simple item record

dc.contributor.authorCarja, Ovidiu ( )
dc.contributor.authorNecula, Mihai ( )
dc.contributor.authorVrabie, Ioan I. ( )
dc.date.accessioned2021-04-19T12:59:40Z
dc.date.available2021-04-19T12:59:40Z
dc.date.issued2004-04-06
dc.identifier.citationCârjă, O., Necula, M., & Vrabie, I. I. (2004). Local invariance via comparison functions. Electronic Journal of Differential Equations, 2004(50), pp. 1-14.
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13387
dc.description.abstractWe consider the ordinary differential equation u'(t) = ƒ(t, u(t)), where ƒ : [a, b] x D → ℝn is a given function, while D is an open subset in ℝn. We prove that, if K ⊂ D is locally closed and there exists a comparison function ω : [a, b] x ℝ+ → ℝ such that limh↓0 inf 1/ h [d(ξ + hƒ(t, ξ); K) - d(ξ; K)] ≤ ω(t, d(ξ; K)) for each (t, ξ) ∈ [a, b] x D, then K is locally invariant with respect to ƒ. We show further that, under some natural extra condition, the converse statement is also true.
dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2004, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectViable domainen_US
dc.subjectLocal invariant subseten_US
dc.subjectExterior tangency conditionen_US
dc.subjectComparison propertyen_US
dc.subjectLipschitz retracten_US
dc.titleLocal invariance via comparison functionsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record