Local invariance via comparison functions
dc.contributor.author | Carja, Ovidiu ( ) | |
dc.contributor.author | Necula, Mihai ( ) | |
dc.contributor.author | Vrabie, Ioan I. ( ) | |
dc.date.accessioned | 2021-04-19T12:59:40Z | |
dc.date.available | 2021-04-19T12:59:40Z | |
dc.date.issued | 2004-04-06 | |
dc.identifier.citation | Cârjă, O., Necula, M., & Vrabie, I. I. (2004). Local invariance via comparison functions. Electronic Journal of Differential Equations, 2004(50), pp. 1-14. | |
dc.identifier.issn | 1072-6691 | |
dc.identifier.uri | https://digital.library.txstate.edu/handle/10877/13387 | |
dc.description.abstract | We consider the ordinary differential equation u'(t) = ƒ(t, u(t)), where ƒ : [a, b] x D → ℝn is a given function, while D is an open subset in ℝn. We prove that, if K ⊂ D is locally closed and there exists a comparison function ω : [a, b] x ℝ+ → ℝ such that limh↓0 inf 1/ h [d(ξ + hƒ(t, ξ); K) - d(ξ; K)] ≤ ω(t, d(ξ; K)) for each (t, ξ) ∈ [a, b] x D, then K is locally invariant with respect to ƒ. We show further that, under some natural extra condition, the converse statement is also true. | |
dc.format | Text | |
dc.format.extent | 14 pages | |
dc.format.medium | 1 file (.pdf) | |
dc.language.iso | en | en_US |
dc.publisher | Southwest Texas State University, Department of Mathematics | en_US |
dc.source | Electronic Journal of Differential Equations, 2004, San Marcos, Texas: Southwest Texas State University and University of North Texas. | |
dc.subject | Viable domain | en_US |
dc.subject | Local invariant subset | en_US |
dc.subject | Exterior tangency condition | en_US |
dc.subject | Comparison property | en_US |
dc.subject | Lipschitz retract | en_US |
dc.title | Local invariance via comparison functions | en_US |
dc.type | publishedVersion | |
txstate.documenttype | Article | |
dc.rights.license | ![]() This work is licensed under a Creative Commons Attribution 4.0 International License. | |
dc.description.department | Mathematics |