Show simple item record

dc.contributor.authorGeorgiev, Svetlin G. ( )
dc.date.accessioned2021-05-28T14:31:05Z
dc.date.available2021-05-28T14:31:05Z
dc.date.issued2005-06-27
dc.identifier.citationGeorgiev, S. G. (2005). Blow up of solutions for Klein-Gordon equations in the Reissner-Nordstrom metric. Electronic Journal of Differential Equations, 2005(67), pp. 1-22.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13654
dc.description.abstractIn this paper, we study the solutions to the Cauchy problem (utt - Δu)gs + m2u = ƒ(u), t ∈ (0, 1], x ∈ ℝ3, u(1, x) = u0 ∈ Ḃγp,p (ℝ3), ut (1, x) = u1 ∈ Ḃγ-1p,p (ℝ3), where gs is the Reissner-Nordströ m metric; p > 1, γ ∈ (0, 1), m ≠ 0 are constants, ƒ ∈ C2 (ℝ1), ƒ(0) = 0, 2m2|u| ≤ ƒ(l) (u) ≤ 3m2|u|, l = 0, 1. More precisely we prove that the Cauchy problem has unique nontrivial solution in C((0, 1] Ḃγp,p (ℝ+)), u(t, r) = {v(t)ω(r) /0 for t ∈ (0, 1], r ≤ r1 for t ∈ (0, 1], r ≥ r1, where r = |x|, and limt→0 ||u||Ḃγ p,p (ℝ+) = ∞.
dc.formatText
dc.format.extent22 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2005, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectPartial differential equationen_US
dc.subjectKlein-Gordonen_US
dc.subjectBlow upen_US
dc.titleBlow up of solutions for Klein-Gordon equations in the Reissner-Nordstrom metricen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record