Show simple item record

dc.contributor.authorToumi, Faten ( Orcid Icon 0000-0002-9923-9729 )
dc.contributor.authorZeddini, Noureddine ( )
dc.date.accessioned2021-07-13T20:34:37Z
dc.date.available2021-07-13T20:34:37Z
dc.date.issued2005-12-08
dc.identifier.citationToumi, F., Zeddini, N. (2005). Existence of positive solutions for nonlinear boundary-value problems in unbounded domains of . Electronic Journal of Differential Equations, 2005(143), pp. 1-14.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/13868
dc.description.abstractLet D be an unbounded domain in ℝn (n ≥ 2) with a nonempty compact boundary ∂D. We consider the following nonlinear elliptic problem, in the sense of distributions, Δu = ƒ(., u), u > 0 in D, u|∂D = αφ, lim|x|→+∞ u(x)/h(x) = βλ, where α, β, λ are nonnegative constants with α + β > 0 and φ is a nontrivial nonnegative continuous function on ∂D. The function ƒ is nonnegative and satisfies some appropriate conditions related to a Kato class of functions, and h is a fixed harmonic function in D, continuous on ¯D. Our aim is to prove the existence of positive continuous solutions bounded below by a harmonic function. For this aim we use the Schauder fixed-point argument and a potential theory approach.
dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2005, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectGreen functionen_US
dc.subjectNonlinear elliptic equationen_US
dc.subjectPositive solutionen_US
dc.subjectSchauder fixed point theoremen_US
dc.titleExistence of positive solutions for nonlinear boundary-value problems in unbounded domains of Rnen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record