Show simple item record

dc.contributor.authorKaufmann, Eric R. ( )
dc.contributor.authorRaffoul, Youssef N. ( )
dc.date.accessioned2021-08-03T19:19:30Z
dc.date.available2021-08-03T19:19:30Z
dc.date.issued2007-02-12
dc.identifier.citationKaufmann, E. R., & Raffoul, Y. N. (2007). Periodicity and stability in neutral nonlinear dynamic equations with functional delay on a time scale. Electronic Journal of Differential Equations, 2007(27), pp. 1-12.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14177
dc.description.abstractLet T be a periodic time scale. We use a fixed point theorem due to Krasnosel'skiĭ to show that the nonlinear neutral dynamic equation with delay xΔ(t) = -α(t)xσ (t) + (Q(t, x(t), x(t - g(t)))))Δ + G(t, x(t), x(t - g(t))), t ∈ T, has a periodic solution. Under a slightly more stringent inequality we show that the periodic solution is unique using the contraction mapping principle. Also, by the aid of the contraction mapping principle we study the asymptotic stability of the zero solution provided that Q(t, 0, 0) = G(t, 0, 0) = 0.
dc.formatText
dc.format.extent12 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University-San Marcos, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2007, San Marcos, Texas: Texas State University-San Marcos and University of North Texas.
dc.subjectKrasnosel'skiien_US
dc.subjectContraction mappingen_US
dc.subjectNeutralen_US
dc.subjectNonlinearen_US
dc.subjectDelayen_US
dc.subjectTime scalesen_US
dc.subjectPeriodic solutionen_US
dc.subjectUnique solutionen_US
dc.subjectStabilityen_US
dc.titlePeriodicity and stability in neutral nonlinear dynamic equations with functional delay on a time scaleen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
dc.description.departmentMathematics


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record