Show simple item record

dc.contributor.authorArruda, Suellen Cristina Q. ( )
dc.contributor.authorNascimento, Rubia G. ( )
dc.date.accessioned2021-08-23T14:51:56Z
dc.date.available2021-08-23T14:51:56Z
dc.date.issued2021-04-02
dc.identifier.citationArruda, S. C. Q., & Nascimento, R. G. (2021). Existence and multiplicity of positive solutions for singular p&q-Laplacian problems via sub-supersolution method. Electronic Journal of Differential Equations, 2021(25), pp. 1-11.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14422
dc.description.abstract

In this work we show the existence and multiplicity of positive solutions for a singular elliptic problem which the operator is non-linear and non-homogenous. We use the sub-supersolution method to study the following class of p&q-singular problems.

-div (a(|∇u|p)|∇u|p-2∇u) = h(x)u−γ + ƒ(x, u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

where Ω is a bounded domain in ℝN with N ≥ 3, 2 ≤ p < N and γ > 0. The hypotheses on the functions α, h, and ƒ allow us to extend this result to a large class of problems.

dc.formatText
dc.format.extent11 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2021, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectp&q-problemen_US
dc.subjectSub-supersolution methoden_US
dc.subjectSingular elliptic problemen_US
dc.titleExistence and multiplicity of positive solutions for singular p&q-Laplacian problems via sub-supersolution methoden_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record