Show simple item record

dc.contributor.authorSapagovas, Mifodijus ( )
dc.contributor.authorNovickij, Jurij ( Orcid Icon 0000-0001-8479-9638 )
dc.contributor.authorStikonas, Arturas ( )
dc.date.accessioned2021-10-13T19:05:40Z
dc.date.available2021-10-13T19:05:40Z
dc.date.issued2019-01-10
dc.identifier.citationSapagovas, M., Novickij, J., & Stikonas, A. (2019). Stability analysis of a weighted difference scheme for two-dimensional hyperbolic equations with integral conditions. Electronic Journal of Differential Equations, 2019(04), pp. 1-13.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/14647
dc.description.abstractWe consider two-dimensional hyperbolic equations with nonlocal purely integral conditions. We analyze the spectral properties of the finite difference scheme for the two-dimensional hyperbolic problem. To analyze the stability of a weighted difference scheme, we investigate the spectrum of a finite difference operator, subject to integral conditions.en_US
dc.formatText
dc.format.extent13 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2019, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectNonlocal boundary conditionsen_US
dc.subjectHyperbolic equationsen_US
dc.subjectSpectrum of finite difference operatoren_US
dc.subjectStability of finite difference schemeen_US
dc.titleStability analysis of a weighted difference scheme for two-dimensional hyperbolic equations with integral conditionsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record