Show simple item record

dc.contributor.authorIaia, Joseph ( )
dc.date.accessioned2022-03-10T14:46:03Z
dc.date.available2022-03-10T14:46:03Z
dc.date.issued2018-11-06
dc.identifier.citationIaia, J. A. (2018). Existence of solutions for sublinear equations on exterior domains. Electronic Journal of Differential Equations, 2018(181), pp. 1-14.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/15477
dc.description.abstractIn this article we consider the radial solutions of ∆u + K(r)ƒ(u) = 0 on the exterior of the ball of radius R > 0, BR, centered at the origin in ℝN with u = 0 on ∂BR and limr→∞ u(r) = 0 where N > 2, ƒ is odd with ƒ < 0 on (0, β), ƒ > 0 on (β, ∞), ƒ(u) ~ up with 0 < p < 1 for large u and K(r) ~ r with (N+2)-p(N-2)/2 ≤ α < N - p(N - 2) for large r. We prove existence of n solutions - one with exactly n zeros on [R, ∞) - if R > 0 is sufficiently small. If R > 0 is sufficiently large then there are no solutions with limr→∞ u(r) = 0.
dc.formatText
dc.format.extent14 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2018, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectExterior domainsen_US
dc.subjectSemilinearen_US
dc.subjectSublinearen_US
dc.subjectRadial solutionen_US
dc.titleExistence of solutions for sublinear equations on exterior domainsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record