Show simple item record

dc.contributor.authorHuang, Li ( )
dc.contributor.authorYang, Yang ( )
dc.date.accessioned2022-04-11T13:30:06Z
dc.date.available2022-04-11T13:30:06Z
dc.date.issued2017-04-18
dc.identifier.citationHuang, L., & Yang, Y. (2017). Asymmetric critical fractional p-Laplacian problems. Electronic Journal of Differential Equations, 2017(103), pp. 1-12.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/15635
dc.description.abstract

We consider the asymmetric critical fractional p-Laplacian problem

(-∆)spu = λ|u|p-2u + up*s-1+, in Ω
u = 0, in ℝN \ Ω

where λ > 0 is a constant, p*s = Np/(N - sp) is the fractional critical Sobolev exponent, and u+(x) = max{u(x), 0}. This extends a result in the literature for the local case s = 1. We prove the theorem based on the concentration compactness principle of the fractional p-Laplacian and a linking theorem based on the ℤ2-cohomological index.

dc.formatText
dc.format.extent12 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 2017, San Marcos, Texas: Texas State University and University of North Texas.
dc.subjectFractional p-Laplacianen_US
dc.subjectCritical nonlinearityen_US
dc.subjectAsymmetric nonlinearityen_US
dc.subjectLinkingen_US
dc.subjectℤ2-cohomological indexen_US
dc.titleAsymmetric critical fractional p-Laplacian problemsen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record