Show simple item record

dc.contributor.authorChae, Dongho
dc.contributor.authorImanuvilov, Oleg Yu
dc.date.accessioned2018-11-15T23:03:21Z
dc.date.available2018-11-15T23:03:21Z
dc.date.issued1998-10-15
dc.date.submitted1998-10-09
dc.identifier.citationChae, D. & Imanuvilov, O. Y. (1998). Existence of Axisymmetric Weak Solutions of the 3-D Euler Equations for Near-Vortex-Sheet Initial Dataen_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/7797
dc.description.abstractWe study the initial value problem for the 3-D Euler equation when the fluid is inviscid and incompressible, and flows with axisymmetry and without swirl. On the initial vorticity ω0, we assumed that ω0/r belongs to L(log L(R3))ɑ with ɑ > 1/2, where r is the distance to an axis of symmetry. To prove the existence of weak global solutions, we prove first a new a priori estimate for the solution.en_US
dc.formatText
dc.format.extent17 pages
dc.format.medium1 file (.pdf)
dc.language.isoen_USen_US
dc.publisherTexas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 1998, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectEuler equationsen_US
dc.subjectAxisymmetryen_US
dc.subjectWeak solutionen_US
dc.titleExistence of Axisymmetric Weak Solutions of the 3-D Euler Equations for Near-Vortex-Sheet Initial Dataen_US
txstate.documenttypeArticle
dc.rights.licenseCreative Commons Attribution 4.0 International License [https://creativecommons.org/licenses/by/4.0/]


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record