Show simple item record

dc.contributor.authorRosset, Edi ( )
dc.date.accessioned2019-03-25T21:52:39Z
dc.date.available2019-03-25T21:52:39Z
dc.date.issued1998-12-09
dc.identifier.citationRosset, E. (1998). Symmetry and convexity of level sets of solutions to the infinity Laplace's equation. Electronic Journal of Differential Equations, 1998,(34), pp. 1-12.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://digital.library.txstate.edu/handle/10877/7947
dc.description.abstract

We consider the Dirichlet problem

u = ƒ(u) in Ω,
u = 0 on ∂Ω,

where Δu = uxi, uxj, uxi xj and ƒ is a nonnegative continuous function. We investigate whether the solutions to this equation inherit geometrical properties from the domain Ω. We obtain results concerning convexity of level sets and symmetry of solutions.

en_US
dc.formatText
dc.format.extent12 pages
dc.format.medium1 file (.pdf)
dc.language.isoenen_US
dc.publisherSouthwest Texas State University, Department of Mathematicsen_US
dc.sourceElectronic Journal of Differential Equations, 1998, San Marcos, Texas: Southwest Texas State University and University of North Texas.
dc.subjectInfinity-Laplace equationen_US
dc.subjectp-Laplace equationen_US
dc.titleSymmetry and Convexity of Level Sets of Solutions to the Infinity Laplace's Equationen_US
dc.typepublishedVersion
txstate.documenttypeArticle
dc.rights.licenseCreative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Download

Thumbnail

This item appears in the following Collection(s)

Show simple item record